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FOREWORD 

This report constitutes a semi-annual r e v i e w  of the research supported i n  

whole or i n  part under NASA Grant NsG-553 for  the period January 1, 1965 - 
June 3.0, 1965. For an overview of the work reported here, reference must be 

made t o  the Annual Report of Research performed under t h i s  grant by the 

Electronic Systems Research Laboratory of Purdue University dated January, 1965. 

This current summary of work progress over the s ix  months' period through 

June, 1965, is  not only a continuation of the projects described i n  the above- 

mentioned Annual Report but is also an attempt t o  give a f a i r ly  comprehensive 

view of the areas under research and, therefore, covers quite detailed 

descriptions of the projects. 
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D. F. Mix 

In the Annual Report of Research, January, 1965, a comparison among four 

learning systems was made. These were 1) with teacher, 2 )  averaging over all 

partitions, 3) decision-directed measurements, and 4)  the i terat ive procedure. 

In  each system, the a pr ior i  density function f o r  the unknown parameter is modified 

A new "learning system" has been developed for  learning the mean value of x 

where only the first two moments of 8 and 

f b c t i o n s  p(B) and p($). 

are needed--not the a pr ior i  density 

The procedure is  as follows: 

Assume we know eo and go, the mean values of random variables 8 and a', mspec- 
2 2 tively, along with ob , the variance of both 8 and g, and en , the variance of x. 

After receipt of the first (unclassified) sample 5, new estimates of 8 and a' are 

(3)  

where P(wlIxl) i s  the probability that  5 is  an element of class w , given the value 

of 5. 
1 

This probability is calculated by 

( 5  



. 
2 

Since the w e t i o n s  p(xlwl) and p(xlwz) are known except for  the unknown parameters 

8 and @, the "best guess" Bo and @o are used i n  (5). 

The variance om2 is now modified by 

and upon receipt of the second sample 5, new estimates are calculated by 
3 3 

where P(wlIx2) and P(w21%) are calculated, as i n  ( 5 ) ,  by using the best available 

guess and g1 f o r  the unkuown parameters. 

Note that t h i s  procedure may be extended t o  the multi-dimensional case, and 

also is  easily extended t o  more than two classes. The result .o f  long computer 

runs (10,OOO samples each) is  shown i n  Table 1, where  there are three classes. 

Figure 1 shows probability of error for the binary case where 6 - j8 = 4 

probability of error  curve compares favorably with the i terat ive procedure* intro- 

duced by Fralick(l) ,  yet the ccatrplexity is greatly reduced. By the statement that 

This 
On' 

th i s  system compares favorably with the i terat ive procedure, we mean that  the 

results are indistinguishable. The computer time required t o  obtain Fig. 1 was 0.6 

minutes, compared t o  13 minutes for the corresponding graph for  the i terat ive pro- 

cedure. 

1. Fralick, S. C., "The Synthesis of Machines which Learn Without a Teacher," Tech. 
Report No. 6103-3, Stanford Electronics Laboratories, April, 1964. 

*See Fig. 4, Page 4, i n  the Annual Report of Research Performed under Grant NsG-553, 
Jan-, 1965. 



Table I 

3 

I n i t i a l  Mnal True 
estimate estimate value 

1.0 1.9 2.0 

3.0 5 - 5 2  5.0 

10.0 8.70 7.0 

3.5 4.62 5.0 
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Be -G PROBABILITY 
OR WITHOUT TEACHER 

4 

SPACES FOR CLASSIFICATION AND RECOGNITION OF PAT"S WITH 

E. A. Patrick 

In  the previous Annual Report, an approach using a "Fixed Bin" Model was introduced 

for learning probability spaces with o r  without supervision, with the objective of obtain- 

ing a system which minimizes conditional probability of error. 

the optimum system computes the conditional probability of the vectors 5: , i = l , Z , * . = , m ,  

Using t h i s  fixed bin m o d e l ,  
i 

i t h  where - P characterizes the conditional probability distribution function fo r  the i 

i j class. 

conditioned on past samples, an iterative solution fo r  P(P - I{XS),) was obtained i n  terms 

of P(p l(Xs]n-l). 

By assuming that  vectors P - and - P , i # j, are s t a t i s t i ca l ly  independent when 
i 

i 1 In general, t h i s  i s  suboptiaruBl since it i s  not, i n  general, true tha t  

W e  have developed the optimum i terat ive solution for  t h i s  nonsupervisory problem 
2 by approaching it as a mixture problem, and correctly applying Bayes Theorem. We 

first establish that the class of conditional distribution W e t i o m ,  F= {F(XIwi)&, 

when forming a mixture, i s  i dex~ t i f i ab le~ '~ .  

A mixture of conditional distribution functions {F(X~UI& i s  given i n  terms of 

mixing parameters (P (wi)k as follows : 
m - 
i=1 

In Eq. (l), F(X) is  the mixing cumulative distribution function and i s  an identifiable 

mixture if for  any other @(X~CD~)& sFand {F(u+)A, then 
m - 
i=l 

i f  and only i f  
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We have considered those classes of c.d.f.’s which can be shown t o  be identifiable, 

and have been able t o  take into account such a p r io r i  information that  the c.d.f.’s differ 

only by a translational parameter, are symmetrical, etc. 

To see how fundamental the mixture approach is, l e t  B be a vector of parameters i 

characterizing the c.d.f. F(XIwi). 

Bi = (m.,o.). 

Bi = (pl ,...,pr ) = P , the vector of bin probabilities. 

of mixing parameters 

For example, if  F(XIwi) i s  known gaussian, then 

If F(Xlwi) i s  completely unknown and the fixed bin m o d e l  i s  used, then 
1 1  
i i i We also define the vector - 

= (P($,,..,P((J$) and a vector B: ’ Bm+l 

(2 1 B = B UB U, . . . ,UB UB 1 2  m m+l 
The optimUm system which minimizes conditional probability of error  must compute 

F(BI[XsIn)- By Bayes Theorem 

Assuming the vector samples %,$, ..., Xn are conditionally independent, we obtain 

From Eqs. (1, 2, 3, and 4) we obtain 

- m  

The optimum i terat ive solution corresponding t o  Eq. ( 5 )  i s  
m 

(3 I 

‘(‘,I ‘Xsln-1) 

It is  very important t o  note that  the i terat ive solution, Eq. ( 6 ) ,  requires that  

the conditional joint  probability density be used i n  the i teration. 

For the last three 

important result given by Eq. (6). 

several researchers were not able t o  obtain the very 
6 Fralick , f o r  example, incorrectly assumed that 
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F(e. ,e 
1 3  

t h  the i 

(Xs)n) = F(ei 
t h  class and j 

(Xs),) F(8. I (Xs)n) where ei and 8 .  are parameters characterizing 

class, respectively. Such an assumption leads, i n  general, t o  
J J 

extremely suboptimum systems. 

We conclude by showing that  an exponentially growing solution for  the binary case 5 

is  a special case of Eq. (6). 

be the n+lst sample from a mixture of continuous distribution flrnctions lh+l 
n+l F(Xn+llwi ,ei) each depending on a single translational parameter Oi. The ith class, 

active on the n+lst sample, is denoted by wY+l, and it i s  assumed tha t  p(wi n+i ) = phi), 

i=1,2,. . . ,m, i. e., the class probabilities, are known. 

4 
The a posteriori  probability of the event (Xn+l,wy'l) was computed by Abramson , 

5 later by Daly , by partitioning the sequence of samples %...Xn into the mutually 

exclusive and exhaustive ways that  they can occur. 

possible parti t ions,  Abramson and Daly noted that  

If N: denotes the rth of the mn 

n m 

r=h 
m 

n m 

n r=l 
m 

r=l 

r=l 
where P(wi), i=l,s ,..., m are assumed known. 

6 Fralick , looking for  a simplification of Eq. (lo), obtained an iterative form 

assuming that,  i f  ei i s  a parameter of f(Xlei,wi) and 8 .  a parameter of f(XIBj,wj), 

then f(eil (Xs)n,ej) = f(eil (X ) ). Fralick's result is, i n  general, suboptimum since, 

i n  general, f(eil(X ) , e . )  # f(eil(XS),) j# i. 

J 

s n  
This condition is  t rue when 6. is  

S n  J J 
= e2, corresponds t o  the binary on-off case without '3 known, which f o r  m = 2, ei = el, 

supervision. 
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We show here tha t  the desired a posteriori probability is ei ther  of the growing form 

or equivalently an i terat ive form for  the joint a posteriori  probability of el . = =  Om, 

where the marginal a posteriori  probability of ei is obtained by integrating the joint 

density t o  get the marginal density. To show t h i s  result, we concentrate on 
n n+l n n+l 

f(ei( sr>wi ,(Xs)n> i n  Eq. (10). Applyin@; Bayes theorem t o  f(Qilsr,wi ,(XS),) and 

noting tha t  wi n+l can be dropped from the expression gives 

Substituting Eq. (ll) in  Eq. (10) gives, after sane calculations, 
m 

such that 

L 
r=l 

L 
r=l 
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where we have assumed conditional independence and f(XnIw:,ev) known for v = l,Z?,~~~,m~ 

Interchanging integration with respect to both summation signs i n  Eq. (15) gives 

f(eil (Xsfn) = 

m 

J#i r=l j#l 

n-1 

J * * *  j 77 dej 1 [ 1 P(ej)f(xnlw;,ej) + P(wi)f(xnIw;,ei)] P(x~-ll(xsln-l) 

f ( (e  jl jfi’ Oil (xsln-lY IC;-1] 

f c q  (Xsln-l’ IC;-’, 

The outer summation is removed by the inverse operation t o  tha t  used i n  Eq. (7) t o  

‘W J 

Thus an equivalent form of the optimum, growing solution is  an i terat ive solution 

which computes the marginal a posteriori densities from the joint  a posteriori  

probability density according t o  Eq. (18) where 

f ( s l  (ej) j+i,ei) = 1 
j#i  

+ P ( ~ ~ ) ~ ( x ~ I ~ ~ ~ Q ~ )  

i s  a mixture of conditional c.d.f. ‘5, f(Xnlu>ev), and mixing parameters P(wv), v=1,2,= .ma 

A basic approach to t h i s  nonsupervisory problem is thus t o  start with Eq. (18) using 

the m i x t u r e  expression of Eq. (19) and compute 

(20 1 f ( % + p i  n+l I CXsln> = Phi) J f(Xn+JUi n+l Y ei)f(eil (XsIn)dei 

In general, f (€Ii\ (Xs),) i s  computed i n  terms of the joint  probability density, 

f(6, .e I {Xs)n-l), at  the n-lst stage. m 
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C. SYNTHESIS OF OPTIMUM RECEIVERS FOR WARY CIUNEZS WITH m S I V E  llJTERsyMBoL 
TlammRmcE 

J. C. Hancock 

R. W. Bang 

This study is a continuation of the work reported i n  "Annual Report of Research, 

Grant IVsC-553, Jan., 1965 J, 2 . 
I&e t o  the ever-increasing data rate i n  high speed d ig i ta l  communications, one 

has t o  deal with intersymbol interference i n  certain circumstances between not just  

two adjacent time periods, but quite a number of adjacent t i m e  periods. New results 

i n  t h i s  study are: 

1) An optimum receiver structure is obtained for the general case of m-ary 

channels with intersymbol interference between a large number of observations. 

2) A new concept of a posteriori weighting matrix i s  introduced which  holds 

for  the general problem of observing a markav source through a noisy channel. A 

matrix chain i s  derived showing a procedure of modifying a conventional markuv chain 

equation with the a posteriori observations. 

3) A new concept of sufficient decision s t a t i s t i c s  i s  introduced. A theorem i s  

derived which shows how t o  obtain optimum receiver structures that  can be implemented 

i n  practice. 

Although the discussions i n  t h i s  s t u d y  are phrased i n  terms of c o d c a t i o n  

channels, the  methods and concepts are comgletely general and can be applied t o  other 

problems. Since a markov chain of order L > 1 can be reduced t o  a markov chain, it 

suffices t o  consider a markov chain. 

Consider a d i g i t a l  c m c a t i o n  system i n  which a sequence of independent 

m-ary signal d ig i t s  %,..., Bn is  transmitted with known a pr ior i  probability. 

Because of the high data rate, there i s  intersymbol interference between L time 

periods (for example, L = 5 ) .  

time period, and denote the classification of Sk(t) by %. 
Let  Sk(t) be the t o t a l  received signal i n  the kth 

It can be sham that  



%, Az,. . . .,A form a markuv chain. n 
In th i s  study, the waveform of each possible Sk(t) i s  known. Sk(t) is 

contaminated by noise N , ( t ) .  

i s  sampled, and l e t  s, Sk, and 

is  not necessarily gaussian, the probability density f’unction of % is  known. 

samples in % need not be independent; it is  only assumedthat the randam vectors 

The receiver observes %(t) = Sk(t)+Nk(t). Assume $(t) 

be the vectors of the samples. Although the noise 

The 

HI, . . . ., H are independent. , n  
To classify the m-ary signal digits B .... Bn with minimum probability of error  

1’ 
n after receiving 5,. . . . Xn, the optimum receiver computes P(R = nj/Vn), j = 1, . . m , 

and accepts the hypothesis YC = xi i f  P(n = R /V ) > P(x = n /V ) for all j f i, 
i n  j n  

where n = (3 ,...., Bn) and Vn = (5 ,...., s). 
The optimum receiver constructed i n  t h i s  manner w i l l  compute mn probabilities. 

Since mn increases exponentially with n, it is  practically impossible t o  bplement 

such a receiver for even moderate values of n (e.g., m = 2, n = 20). To overcome 

t h i s  difficulty,  it is  important t o  observe tha t  i f  the probability of error i s  t o  be 

very small, as it i s  in  most practical  systems, the a posteriori  probability P(n = “ d V n )  
corresponding t o  the t rue classification xT nust be close t o  Unity for large values 

of n(e.g., m = 2, n = 200). This observation leads t o  the following theorem. 
1 Theorem: Let nT be the true classification of n. If P(n = “$In) > zy a 

condition usually satisffed i n  practice, then the optimum (minimum probability of 

e r ror )  receiver can be constructed fran the following decision rule: 
L Compute the probability P(% = j/Vn), j = 1,. . . . , m , and accept the hypothesis 

L According t o  t h i s  theorem, P(4, = j/Vn)y k = 1 ,...., n, j = 1 ,...., m form 

a set of sufficient decision s t a t i s t i c s  for  optimum decision under the condition 
1 P(a = a /V ) > 2. The importance of t h i s  theorem lies i n  the fact  that  it introduces T n  

the new concept of suff’icient decision s ta t i s t ics .  By t h i s  concept, one can r e a c e  



a multi-dimensional decision s t a t i s t i c  (euch as x of n dimension) t o  a decision 

s t a t i s t i c  of lower dimension (such as $ of one dimension), 

the data processing procedure. 

be computed with a fixed receiver structure which does not grow with n. 

thus greatly s impl iwng 

As w i l l  be shown i n  the following, P($ = j/V,) can 

This 

receiver structure i s  simple and can be implemented i n  practice. 

Comparing P(% = j /Vn) is the same as comparing P($ = j /Vn) p(Vn). 

shown tha t  P($ = j/Vn) p(Vn) can be broken in to  two terms. The first term is  

P(& = j/vk) p(vk) i n  which the past and present ObselcvetiOns vk = (5,. . . . $) are 

u t i l i zed  i n  classifying &. 
observations Uk = 

observations can be 

It can be 

The second term i s  p(Uk/l& = j )  i n  which the future 

Xn are uti l ized t o  classify pa. Thus, the future 

handled separately for any value of L. This conclusion is  contrary 

3 t o  tha t  i n  Gonsalves' report . 
The first term P($ = j/v,)p(Vk) i s  now stuilied. 

results are given. Define four matrices: 

P(k) = 

L(K) = 

0 

0 

9 

0 

0 

. .  

. .  

. .  

Derivations ere omitted. Only 

P =  
0 

. .  

. .  

. .  
= m )  L 1 



P(K,k-l) = 

W e  obtain 

P(4, = = 1) 

13  

P(4, = 1/%-1 = 2) .  . . . .P(% = l /Ak_l = mL) 

P(4, = 2/Aa_l = 2 ) .  . . . .P(% = 2/%,1 = mL) 

P(k) = L(k) P(k,k-1) P(k-1) (1) 

Note tha t  Eq. (1) is  i n  iterative form. Iterating Eq. (1) gives 

P(k) = L(k) p(k,k-1) L(k-1) P(k-1,k-2). . . . . . . . .L(2) P(2,1).L(l) Po 

(2 1 
Quation (2) fs an importw& resul t .  The m t r i c e s  P(k,k-1), P(k-1,k-e), . . .,P(2,1), 

and Po i n  Eq. (2)  correspond t o  the transit ion matrices defined i n  the markov chain 

study. 

because t h e i r  elements are given a pr ior i  probabilities. 

L(k-1), . . . ., L(2), and L(1) i n  Eq. (2)  can be termed the a posteriori  weighting 

matrices. 

a s  t he i r  elements are the likelihood functions computed from the observations X1+..., 3. 
The a p r io r i  and the  a posteriori informetion can be handled separately and then combined 

a s  i n  Eq. (2). As f a r  as the authors are aware, Eq. (2) has not appeared i n  t h e  past. 

It i s  not possible t o  describe the related results and generalizations here; they w i l l  

be included i n  a technical report (also in  a paper which has been subaitted t o  IEEE ). 

They provide the a pr ior i  informetion concerning the classification of % 
The other matrices L(k), 

They provfde the a posteriori  information about the classification of %, 

4 

The above considers the f i r s t  term P(% = j /Vk)  p(V,) of the decision s t a t i s t i c  

p(4, = J/Vn) p(Vn). 

computed f'rom the equation (derivations omitted) 

The second term p(Uk/$ = j) of the decision s t a t i s t i c  can be 

(3) 
T Q(k) = PT(k+l,k) L(k+l) PT(k+2,k+l) L(k+2). . . . .P (n,n-l)Ln 

T. where P (k+l,k) is t he  transpose af P(kt1,k) and 



. 

, 

14 

and L =  n 

Equation (3) can a l so  be written i n  i terat ive form as 

Q(k) = PT(k+l,k) L(k+l) Q(-k+1) 

n Decision s t a t i s t i c  P(% = j /Vn)  p(V ) can be compute 

(4) 

~y coL,,ning P(k) and Q(k) 

Decision rule can then be applied t o  classify the observation 5, . . . . , Xn. 

completes the data processing procedure. 

This 

It can be seen from Eqs. (1) and (4) tha t  only two matrices are involved i n  each 

i terat ion.  Thus, the receiver structure i s  fixed and simple, and can be implemented 

i n  practice.  
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D. COGNITIVE SIGNAL PROCESSING 

J. C Hancock 

W. D. Gregg 

1. Review of the Research 

This research is motivated by the vast requfrements for processing the following 

classes of signals: 

(a) Signals of electromagnetic origin; multiple category radar echos for  

diSCrfmirMAtfOn of radar cross-section signatures (missile-decoy cP"OSS-section8, clear 

air turbulence cross sections, f i n e  structure characterized surface cross-sections, 

e t c .  19. signals arising i n  d ig i ta l  data links which have experienced random multiplicative 

fading and beam spl i t t ing  (mult ipth)  w i t h  phase dispersion. 

(b) Signals of acoustic orfgin arising as a result of med ium soun*ng fo r  

structure of object detection and acoustic cross-section discrimination as i n  

seismic or submarine sounding OF passive detection of submarines and other acoustic 

sources. 

(c)  Afferent signals of bfoelectric orfgin which contain t h e  features and 

signatures of a physicd environment encoded by the sensory transduceree 

The research is c u a e n t l p  concerned with the problem of optimum (,deFPned below) 

signal processing when 

(a) S t a t i s t i c a l  and detemirtfstic features of the categories (disturbance and 

signal) are unknown. 

(b) Classified o r  supervised time slots  (classified learning sequences) are not 

available for a prior i  estimation of the abme features. 

The i n i t i a l  investigation has been restricted t o  the t'low pass" two category or 

binary case which might be represented by any of the waveforms below, 

*%due University, Electronics Systems Laboratory, Annual Repcjrt of Research, Jan., 
w55, P* 15. 
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Rg0 1. 

2. Approach t o  the Problem 

h attempt has been made t o  approach the problem by applying the fundamentals of 

mathematical s ta t i s t%cs  per tbaEt  t o  discriminant function theory and generalized 

hypothesis testing. The i n i t i a l  assumptions are 

(a> N discrete vector observations (sampled time slots) available for Drocessing. 

(b) V of the vectors are from y and W of the vectors are f r o m  w2 w i t h  V + W = N 
and wl \p w2 = tl = &n 

(c )  
Z = ( z  1 is not classified.  

The proportionality factors '31 and W are not. known md the vector sequence 

The principal diff icul ty  i n  unsupedsed o r  unclassified discrimination (dichotamfz- 

3 - 

ation i n  the two category case) io due t o  the lack of a reference for  "comparing" the 

a si tuat ion that  does not exist i n  the clisssica~ hyper-plane (%yes discrete % 9  

matched f i l ter)  case or  the supervised case. 'Thus the "reference" must be generated 

f r o m  within the t i m e  series. 

The strategy used t o  establish a $Porn within the time series consists 

of testing successive data vectors against the preceding data vector using all prior 

data vectors for  information content about. the p a m e t e r s  of discrfnenation. The 

tests can be e i ther  p a m e t r i c  or dfstrfbtution free. The parametric tests are carried 
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out via the generalized likelihood r a t i o  test given by 

I -  \ 

i,i + 1 =1,2 ; j =1,2 ,..., M 
The optimality of the generalized likelihood r a t io  test l i e s  i n  the fact  tha t  i f  

a uniformly most powerful (hence minimal probability of e r ror )  test  exists, it is 

given by Aj(s,g+llz). 
is asymptotically chi-squared. 

j 
A usef'ul practical aspect i s  due t o  the fact  that  -2 log A 

Hence successive isolations and separations of the 

data vectors occur as the nul l  and alternative hypotheses Ho, H1 are designated by 

3 '  
the  values of X 

It i s  appropriate t o  point out t h a t  investigations and analyses of other classes 

of a y e s  approaches other than the classical %yes approach are considered for  the 

following reasons. 

(8) The "classical" k y e s  approach requires the computation of 

i = 1,2 ; g = {ZN1 

where (6) i s  the multidimensional set of parameters of category i including the location 

parameter 2 .  

(b) For the classified, supervised, or  the "learning with teacher" case, the 

posterior density kernel of the assumed random parameter (0) i s  

where h ( ( e ) )  i s  the prior kernel of ( 8 )  and h(z1{6);wi) i s  the kernel of the l i ke l i -  

hood of given (0) . For the assumptions of a conjugate' pr ior  kernel on (01 ,  the 
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posterior kernel h({e] Iz;uri) is of the same form (reproducibility), however the prior 

or learning sequence must be classified. The likelihood P ( ~ ~ + ~ ! z ; w ~ )  need not have 

the same form as the posterior kernel. 

(c) For the unsupervised, unclassified, or'kithout teacher" case about the prior 

5 sequence 3 the "classical" a y e s  form upon e-sion of P((e] lZ) - has yielded . 
I? 

(1) P( (e] 12) containing 2 terms as a result of a Bayes expansion conditioned 

upon a l l  possible formats of the sequence computations or the 

equivalent of "2 likelihood structures". 

n 
= (2+] requiring 2 

n 

(2) P((0) lg) expanded i n  a particular manner with particular assumptions and the 

introduction of a mixture expanaion a t  a particular stage effecting a recursive form 

requiring computations over a l l  possible (e). 

In  both exponential and recursive forms, the f i n a l  result i s  not unique and 

depenb upon the order of intermediate assumptions and manipulations. 

t o  the less desirable properties of requiring 2' ccxputations or cormputations mer all 

possible values of (e) (completely different averages), the final form does not appear 

t o  be unique. 

3. Physical Filter Interpretation of Cognition and Learning 

It must be indicated that the asswnption of 18 sampled t i m e  slots, z 

Thus i n  addition 

assumes -J' 
time s lo t  synchronization as w e l l  as a knowledge of the category duty cycle T. 

the argument might be posed that  a knowledge of the duty cycle allows the  selection of 

a + i m e  constant for a simple first order low-pass RC f i l ter  with continuous f i l t e r ing  

Yie ld ing  a degradation of only 1 db in the r a t i o  of peak pulse power t o  mean square 

noise voltage due t o  mismatch. This would bet t rue i f  the signal pulses were square 

and t h i s  f ac t  was known; however, if the pulse shape i s  more complex, such as a 

sawtooth pulse of equivalent energy, the "optimum" t i m e  constant differs considerably 

from that 

!thus 

for  the square pulse (see ELg. 2 where tuc i b  the 3 db filter radian frequency). 

Thus a selection of the f'optimmmrlm" mie-matched or  sub-optbum first order matched 
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f pulse duty cycle would r sult i n  an unnecessary 

degradation of Smo. 

signal structure i n  additive white noise certainly jus t i f ies  the attempt t o  "learn" 

This effect observed for the cases of rather simple low-pass 

the category features, characteristics, or signatures. 

4. Current Results and Conclusions. 

A portion of the initial effor t  has been devoted t o  a sSudy of the behavior of 

the power function, f3(g/v3), for a given significance level of "one shot" vector 

sequence dichotamizations of waveform (a)  on the basis of s t a t i s t i c a l  feature 

dissimilarity about the location parameter g under the following conditions. 

(a) h a s ,  gl, % unknown, variance e known; Parametric (Gaussian) 

(b) Means, g3, €& unknown, variance 8 unknown; Parametric (Gaussian) 

(c) 

3 

3 
Non-Parametric (Mstribution Free); Sign Test. 

This portion of the analysis has been concerned w i t h  the degradation of the power 

3 
The behavior 

of the test during the degeneration of the model fromthe parametric case with 8 

known t o  the parametric case with 8 unknown t o  the non-parametric case. 

of the power Function of the test s t a t i s t i c  X 

i n  Fig. 3. 

3 
for the one shot case i s  i l lus t ra ted  J 

The power fbnction of the hyperplane decision boundry i s  included for 

purposes of comparision. The test s t a t i s t i c  for the parametric cases, (a) and (b), 

i s  computed on the basis of a two-sided composite alternative, whereas the sign test 

can only be computed for a one-sided composite alternative. Since the power associated 

w i t h  a one-sided alterative is  generally higher than that for a two-sided alternative 

when t e s t s  are about thc same parameter, the plot of t h e  power function for the non- 

parametric case i n  Fig. 3 exceeds the corresponding plot for the parametric case with 

8 unknown for certain values of 2/m3. The consequent degradation of probability 

of error of the second kind can be extracted f'ran Pyg. 3 as 
3 

with the probability of error of the first kind equal t o  the signficance l e v e l a .  

The extension of a d icho tdza t ion  strategy from a "one shot" form t o  a recursive 

I 
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form is essential  i n  order t o  effect  the property of cognition or learning i n  signal 

processing. The concepts of classical  sequential decision theory are of practically 

no value as developed, since the only intermediate decisions made therein are whether 

or not t o  continue observations of the scalar or vector samples. In order t o  realize 

the property of cognition or learning, it is: 

I 

l 

(1) Intuit ively felt, for the category model currently being investigated, that 

successive dichotomization on the basis of s t a t i s t i c a l  similarity about a location 

parameter 2 with a reduction i n  the uncertainity about the dispersion or covariance 

matrix parameter 6 should give rise t o  an increase i n  the power of the t e s t  for given 

actual parameters w i t h  an increase i n  the length of the sequence observed (see 

hypothetical dashed l i ne  i n  Fig. 3). 

(2) Necessary tha t  the recursive form of the dichotomizing test s t a t i s t i c  

ref lect  the reduction i n  uncertainty about the parameters (&e ). 
In order t o  introduce the recursion based upon past observations into the current 

Then test s t a t i s t i c  form, it is  necessary t o  assume an abstract prior sequence %- 
for the assumption of a uniform prior kernel, h((e)), i n  (3 ) ,  the posterior kernel is 

of the Wishart form . 
form i s  the multivariate form of the Pearson Type VII, 

3 Fbr an assumption of a Wishart kernel h(  ( 6 )  ), the posterior 

where 

In L(wlfl w2) then becomes (6 1 
420 m 

Ln L(wl/lw2) = -nLn2n + Lnf(n,No,SNo) - LnlSm I - ?(Ln fl + + (1 + - 1) 
0 0 

To obtain Max L, it is  necessary t o  extend the abstract sequence, G, over a 
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negative half l ine  i n  order t o  obtain the asymptotic form of the Pearson Type VI1 

kernel. 

Thus 
L h ( - 4 > r n ( l -  (-Qio3 - _ - - -  1Qio 2 2  i = 1,2  

0 
N 

Lim In f(n,No,SNo) = 0 

and for (So + e )  positive semi-definite and S positive definite, the maximum of Ln J 
) with  respect t o  the  matrix parameter 8 occurs for 1 

e = 2 - so 

J '  
A similar abstraction, limiting process and fbctoring for (&e ) ranging over the 

unrestricted space fl yields I 

where & is a residual bias term as a result of the required factoring of Wm(fl). 

The test s t a t i s t i c  for the "dichotomization" of the first two observations, 
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where S is  given by (3)  and are i nd iv idua l  auto-covariance matrices. J 
The steps necessary t o  incorporate the information about the parameters - e,@ 

gained during sucessive observations have thus been developed fbr the ini t ia l  

observations. 

for dissimilarity, dichotomization, w i l l  result i n  an increased power, p(-/-), 

with successive observations reinforcing the parameter S . 
that  i f  a UMP t e s t  s t a t i s t i c  exis ts  for the intended dichotomization, it i s  given by 

A t  t h i s  point, it is only intuit ively concluded that  successive tests 
6 

-I 

It must be pointed out 3 

h j ,  however only for the "class of tests"based upon a test for  dissimilarity about 

a location parameter 2 with a common dispersion matrix 8 for the two categories or 

poFulations. 

Further work w i l l  include extensions t o  the mth observation, refinements and 

analyses of boundedness and convergence, tests about other parametenand generalizations 

of the category models i n  an e f for t  t o  establish the form of a recursive decision o r  

operator structure required of cognition o r  'learning" without supervision o r  'teacher". 
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11. ADAPTIVE SYSTE3lS 

PA. GENERALIZED KINEPLEX 

P. A. Wintz 

It i s  w e l l  known that  the optimum (minimum probability of error) detector of 

known antipodal signals s ( t ) ,  - s ( t ) ,  o - -  < t < T i n  white gaussian noise n ( t )  

correlates the received data x ( t )  = + s(t) + n ( t )  with a stored replica of the 

signal, and announces a decision i n  accordance with the sign of the correlator output 

a t  t = T. 

design a receiver capable of learning the unknown signal waveform and correlating 

the received data with the learned reference signal r ( t ) .  

i s  constructed from K past bauds according t o  the decision-directed measurement 

strategy (see the Annual Report of Research, January 1965, p. 20) the system error 

rate is  given by 

- 

When the signal waveform is not known a priori ,  it may be reasonable t o  

If the reference waveform 

Prob[do < O(s( t ) ]  Prob [ s ( t ) ]  + Prob [do> Ol-s(t)] Prob b ( t ) ]  
\ where : 

x j ( t )  r ( t )  d t .  3 
d = J- 
j 

-3T 
In FIg. 1 shown below, x ( t )  and r (t) represent the data and reference waveforms 

i i 
during the i - th  signaling interval. 

-m -6 0 'T  -2T -T 
Fig. 1 

By sampling the waveforms xi(t)  and ri(t)R times i n  each T-second interval, d can 
3 



be approximated by the sum d = - >  xj(t i)  rj(t3. 
3 i$ 

This formulation is  suitable fo r  Monte Carlo simulation on a d ig i t a l  computer. 

The results o f t h i s  study are given i n  

of error P as sigmiL-to-noise r a t io  R 

measurement times K and numbers of samples N. 

we have graphedthe probability 

n2(ti) for  various values of E 

An analytical analysis of t h i s  problem is  also being attempted. Severe 

mathematical d i f f icu l t ies  are encountered since the decision-directed measurement 

strategy is inherently nodinear.  Therefore, for  measurement times greater than 

unity (K > 1), the noise associated with the reference signal fs nongaussian. Another 

problem arises because of the noise-cross-noise term associated with correlators 

using noisy references signals. It has been shown that  for  B = 2,4 ... 

i =1 

& si, and n and m are independent zero mean unit  variance gaussian where E = 

random variables. 

i i i= 

Finally, an interest-  id.entfty was discovered i n  the  course of the theoretical 

analysis. This identity, 7 (a?) 2-(gtm) = 1, 01 = 0,1,2, * .  . t o  the author’s 

knowledge, has not been noted previausly . m”=o 
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B. SELF-SYNCRONIZINC RECEIVERS 

P. A.  Wintz 

E. 3. Luecke 

Investigation of d ig i ta l  communication systems under a variety 9f conditions 

and situations has shown tha t  correlation techniques are required t o  achieve opthum 

performance. To Implement a correlation receiver, it is necessary t o  know the epoch 

of each signaling period and the wave shape of the members of the signal s e t  used 

i n  the system. For optimum results, correlation should be done a t  band pass. To 

generalize the problem, it is convenient to  consider the frequency and phase of the 

carr ier"  as well as the low pass wave shapes of the signal se t  as  part of the signal tt 

waveshape. 

under the reasonable constraints of maxirmun power, bandwidth, and signaling rate .  

The problem of supplying t o  the receiver these parameters i s  not t r i v i a l  

1 
1 In one sense, the sub-optimality of a d ig i t a l  system is  determined by the way 

i n  which the designer of the system desensitizes the receiver t o  the parameters of 
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epoch and waveshape. To obtain optimum detection, the receiver must have these 

parameters. It is generally not possible t o  build into the receiver all of these 

parameters, 

pass signal set. 

U s u a l l y  the only available parameter is t he  functional form of the low 

Thus, it i s  necessary for  the transmitter t o  supply t o  the receiver 

the remaining necessary parameters. 

achieved by transmitting extra signals a t  the cost of t o t a l  power and bandwidth. 

This process of b i t  synchronization is usually 

The objective o f t h e  present investigation i s  t o  determine i f  measurements taken 

on the received signal w i l l  permit the determination of the epoch of the signal bits .  

If t h i s  is possible, the energy and bandwidth which is saved can be used fo r  the 

improvement of the signal t o  noise ra t io  or  the signaling rate .  To simplio 

experimental procedures, the band pass case is not considered. Instead, the assumption 

is made that some demodulation scheme has supplied the low pass signal and additive 

+aJ noise. 

Consider the demodulated signal s ( t )  = 1 < ( c )  where $(l) = $ ( t  - i T) 

for i T < t - < (i + 1) T and where ?(A),  m = 1,2, K is the mth signal of the k signals 

i n  the signal se t .  

i s  

Assume that  there is a probability distribution on "m" and the 

signals are transmitted independently. 

Apply this  s ( t )  t o  a l inear  system which has impulse response h ( t )  The output 

of the l inear  system can be written as 

t - i T  
A c t >  = $(S)h(t-I T-f)dC + 7 qmd(S)h( t - l i  - dl T - 5 )  d5 

0 d =1 
where i T < t < fiel] T. - -  

The desired response i s  any one which gives an indication when t = (i + 1) T. 

A l i t t l e  reflection on the form of t ( t ) ,  remembering tha t  S ( 5 )  i s  randomly chosen 
m 

fY& the signal. set ,  indicates that  no l inear operator WfU do the job. 

If, however, some operation can be performed on the s ( t )  before applicationto 
m the l i nea r  system so tha t  each q-d = f191-d ) i s  identical, then a l inear  system can 
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be implemented t o  obtain epoch information. 

signalling, the class of operators y = f ( ' )  is given by all even functions. 

For the special case of binary antipodal 

The periodic signal which results f r o m  t h i s  "even function" operation may kc 

determined by Fourier Series analysis. 

component of this signal are analytically related t o  the epoch of the b i t .  

f i l t e r ing  a t  the fundemental frequency will provide the desired epoch information. 

The zero crossings of the fundfmental. 

Bandpass 

The addition of noise t o  the input signal causes severe complications t o  the 

analysis of the system. 

combination of signal wave shape and nonlinear operator t o  provide m a x 3 . n ~ ~  power at  

the fundamental frequency. A t  low S/N, the effect  of the interaction of signal and 

noise i n  the nonlinear operator is  not, i n  general, known. 

the design objective would be t o  maximize the r a t io  of signal power at  the f'undamental 

t o  noise i n  the band around the fundamental. 

solution w i l l  be the same as the high S/N. 

A t  high S/N, the design objective would be t o  determine the 

Under this mode of operation, 

It i s  not apparent that  the low S/N 
- 

Because of the lack of ana ly t ic  and experimental results on the distributions 

and spectral  densities which result f r o m  nonlinear operations, the present point 

i n  t h i s  project i s  obtaining data for a number of representative signals With various 

S/Ii and representative nonlinear operators. 

C e  M I V E  PROCESSIMG OF TROPO-SCATIIER DATA 

P. A. Wintz 

M. I). Shapfro 

In  t h i s  experiment, certain of the concepts discussed i n  Part A of t h i s  section 

are  baing used t o  process binary data transmitted Over the Purdue-Collins Radio Co. 

tropospheric-scatter l ink.  

stored on magnetic tape. 

7094 Computer. 

s t ra tegies  : 

1. 

The received data are first time sampled and the samples 

These data are then processed i n  various ways on Purdue's 

Computer programs have been written for  the following detection 

The binary information is differentially encoded, and the received data are 
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29 i correlated with a reference signal. 

the reference signal is  simply the data received during the previous baud. 

measurement tises greater than one signal duration, the data from K past bauds 

are used t o  form a reference signal according t o  the  decision-directed measurement 

strategy a 

2. 

For a measurement time of one signal duration, 

For 

I ’ This process i s  similar t o  tha t  i n  1, except that  a nondecisfon-directed measure- 

I ment strategy is used t o  form a reference from the K past bauds. 

references i s  taken t o  be the sample mean of the magnitude of the corresponding 

samples of the previous K bauds. 

Each sample of the 

, 3. In t h i s  process the received data are correlated w i t h  stored replicas of the 

transmitted signals. 

These programs have been debugged and used t o  process data originated i n  the 

laboratory. Processing of actual tropo data w i l l  start i n  September, 1965. All 

processing i s  being done a t  baseband. 

111. SIGNAL DESIGN 

A.  TROPO-SCAm SIGNAL IIESIGN 

Do R. Anderson 

In the design of signals for a variable communication channel, the central 

quantity is the ambiquity function which is defined f o r  any pai r  of signals s,(t) 

and s,(t) by the formula 

X, ,,(W,T) = 6, ( t )  s , ( t  + T)ejartdt 
G 

-OD 
I , G  - 

Although 5 2 ( ~ , ~ )  originally arose i n  the analysis of radar observations of a fixed 

object by a matched f i l t e r ,  Price and Green showed the importance of it i n  multipath 
f 

1 

commication i n  the i r  analysis o f t h e  Rake system. The same authors have since 

.2 pointed out the importance of IX, ( U , T ) ~  for scattering and multipath channels 
,2 

I even when optimum detection does not require matched f i l t e r s .  They have Shawn tha t  

figures of merit for a signal set are 1) rectangular white-noise-like spectrum for 
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every member, 2 )  uniformly small ambiguity functions for  every pair  of members, 3) 

a sharply peaked self-ambiguity function for each individual member .  

For any pai r  of equal-duration signals one can find a basic lower bound i n  terms 

of time-bandwidth products for the t i m e  r . m . s .  value of the i r  cross-ambiguity function. 

If we c a l l  an arbitrary pair  of signals s,(t) and s2( t ) ,  the i r  common time-duration T, 

and the i r  bandwidths 5 and B2, the bound is  given by: 

1 /2  1/2 z i /  ( 2 ~  + ~ T B Z >  
T 

max [ + JT~%,2(w,T)12dt ]  - 
w 

This shows i n  particular tha t  we have: 

1 1/2 That i s  t o  say, the global maxfmrm of I X  ( w , T ) ~  must be a t  least $(2? + 2m2> . 
1,2 

Since one can construct realizable pairs  of signals for  which 1% 
than 5/ (2'l3+2TBZ)l/', ( 2 )  gives fundamental information about how small a crossambiguity 

f'unction can be. 

(tu,?)( is  no more 
12 

1. Price, R.  and P. Green, "Signal Processing i n  Radar Astronomy Comnmication via 
Fluctuating Multipath Media, " M .I .To Lincoln Lab., Lexington, Mass., Tech, Rept . 
iuo. 234; Cctober, 1960. 



B. DIGITAL COMMUNICATION SYSTEMS OPTIMIZATION FOR CHANNELS WITH W O R Y  

J, C.  Hancock 

E. A. Quincy 

1. Restatement of the Problem 

The specific problem considered fn th i s  research is the optfnization of entire 

binary communication systems, f o e . ,  joint  optimization of the transmitted pulse wave- 

forms and the receiver when the channel response is time-invariant and known. 

the channel i s  assumed t o  exhibit sufficient memory such tha t  intersymbol interference 

results a t  the receiver. 

probability of detection error.  

Also, 

The criterion of optfmality considered is minimum average 

For recent literature pertinent t o  t h i s  problem see 

Refs. 1,2,3, ana 4. 

Fig. 1 Binary Comnunication System Model 

Ffgure 1 shows a model of the binary communication system considered i n  t h i s  

research. 

covariance 

The additive noise is assumed to  be gaussian with zero mean (AGBPPI) and 

Also, the received signal is assumed t o  be representable by a f inite 

L 



sum of weighted basis Wct ions  such tha t  the wei&ting coefficients %re a k-dimensional 

vector denoted by a bar beneath an upper-case l e t t e r .  

2. I n i t i a l  Approach 

An ideal approach t o  t h i s  problem i s  t o  derive the Bass receiver f’rom the  Ma- 

Likelihood Ratio, A(X), for arbitrary transmitted signal waveforms, s l ( t )  and s2( t ) ,  

of length T and an arbitrary time-invariant channel with impulse response h ( t ) .  

ideally, the average probability of error Pe would be derived for  t h i s  receiver. 

resulting Pe would be a f’unction of the received signal energies & of all possible 

cross-correlations 

of received sequences of overlapping ptalses, and of the noise covariance matrix gm 

and the known impulse response h ( t ) .  

we can denote 

Then 

The 

of the two desired sighal wave forms with all possible combinations 

Hence for a specific impulse response and noise 

With an expl ic i t  expression available for Pe it would then be a matter of applying 

variational techniques t o  minimize Pe with respect t o  the transmitted waveforms w i t h  

constraints tha t  f i x  the input energy t o  the channel, i .e ., 

w i t h  

r $ ( t )  d t  = E2 
-T/2 

fir a received signal 2 and AGNZM noise N, l e t  the received waveform be 

X = Z + N  ( 3 )  
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Then the corresponding Maximum Likelihood Ratio for  M bauds of overlap o f t h e  received 

signals is 
x 

w h e r e  the receiver observation period i s  [ O  - (M + 1)T] and 

2M r = 2  (5) 

i s  the number of possible wavefonas that could be received on this observation period 

given tha t  si was sent a t  the beginning of the observation period. 

considered (4) becomes 

For the AGNZM noise 

r 
e 

pi 

r 
v 

- - 
r 

~ p l , - 2 i 2 , i n n , i  T -1 -1z prlz 
i =1 

The flrst term of the exgonent, i n  both numerator and denominator, of (6a) represent 8 

cross-correlation of the received waveform with one of the possible waveforms weighted 

by the noise covariance. The seccad term is a form of energy t o  noise r a t io  for t h i s  

par t icular  waveform. 

(6a) is very non-linear and complicated. 

i n  i t s  complicated form, the analys5s of the performance is  non-tractable due t o  the 

I n  general the receiver corresponding t o  the likelihood r a t io  

Even though the receiver could be implemented 
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non-lineerities. Hence the expression for probability of error, 

desired i n  order t o  have an overall system functional t o  minimize, cannot be obtained 

unless -her simplifying assumptions are made. 

3. Alternate Approaches and Results 

Since the above approach leads t o  a formidable problem, i .e o ,  obtdning the  

functional (7), other approaches w e r e  pursped which circumvent t h i s  problem. 

3.1 

Upon investigation of 

Special Case (Linear b y e s  Receiver) 

Xqz) = log 

i n  (6a), there  are special cases of interest  which reduce A ' @ )  t o  a l inear  form. 

For example, the case of an RC-low-pass channel w i t h  adjacent baud overlap of received 

signals (M = 1) and equally-probable, bipolar signals sl, s2. 

received waveforms on (-T/2 t o  3T/2) 

In addition i f  the 

are a l l  equal energy then (IC) was shown t o  reduce t o  the l inear form 

where 3 is the  channel output corresponding t o  a single-shot s1 input. Also upon 

investigation of the equal energy sequences condition, it was shown, by Quincy 5 , t o  

occur when the head and t a i l  of 3 w e r e  orthogonal. Hence i n  order for  th i s  l inear  

form (10) t o  be a Bayes receiver, 

t ransfer  through 

are orthogonal. 

the channel with 

For t h i s  bipolar 

s,(t) = - s 2 ( d  

the signal 8, should be designed t o  maximize energy 
A 

the constraint 

case 

tha t  the head and ta i l  out of the channel 

( l l )  
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The average probability of error was derived for  t h i s  case of intersymbol 

interference with the additional assumption tha t  the noise was white with spectral 

density No and band-limited t o  the signal bandwidth. The resulting probability of 

error  w a s  

P e = 4 ( - @  

where 

and 

Variational techniques have not thus far  yielded a solution for  s1 above. 

Chalk 

out an additional constraint is 

However, 
6 shuwed tha t  t he  signal which maximizes energy transfer for  the RC channel w i t h -  

(15) 
T 
2 -  - Sl(t) = A COS W o t p  0- < t T/2 

and i f  t h i s  is shiftedhl phase by a specified amount, i.e., 

then the head and t a i l  w i l l  be orthogonal. Unfortunately the energy transfer i s  reduced 

as 8 i s  changed from zero. 

a special case of intersymbol interference. 

system, only an optimum receiver for these signals. 

which maximizes energy transfer with the constraint that the head and t a i l  are 

uncorrelated, it w i l l  be interesting t o  note how much energy transfer is  decreased by 

t h i s  constraint. 

This procedure yields a simple l inear  &yes receiver for 

However it does not yield an overall optimum 

If the optimum signal can be found 

From experience w e  would expect it t o  be decreased s l ight ly .  However, 



i f  the optimum signal transfers the same energy as (15) while meeting the additional 

constraint, then an overall optimum system will be obtained. 
H 

3.2 Approximate Likelihood Ratio X(lC) 

For the case of equally-probable signals sl, s2, (6a) has an interesting l inear  

approximation. kt (6a) be written as 

and 

Since (19a) is a l inear  operation on 

readily be derived and variational techniques applied t o  minimize Pe with respect t o  

the receiver performance i n  terms of Pe can 

s 1 9  s2‘ 

It is interesting t o  note tha t  (X) - i n  (18) i s  a consistent aDproxfnation as the 

intersymbol interference is reduced t o  zero, i .e for  t h i s  case M = 0, r = 1 and 

N 

H 

m80, 1% A@) i n  (19) reduces exact& t o  tha t  of (9) for  the same case considered 

there 

The average probability of e r ror  was derived for  a special case of (lga) i .e e ,  for 
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, 

where E is given by (13) and Ip by (14) The normalized head-tail correlatfcm is e v e n  

n 

and 

Hence (21) can now be written as a f'unctfon of sE and s2 as i n  (7) 

The ideal step a t  t h i s  point is t o  apply variational techniques t o  (21) t o  find 

the  optimum waveform s1 whfch minimizes Pe with the constraint tha t  the energy into 

the channel is f ixed.  

necessarily be the overall optimum system but could bc; i .e . ,  it is an upper bound on 

the overall  optimum system 

We realize of course that  the  resulting system would not 

PO a P: e -  
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I 

Also t h i s  probability of error  converges t o  the optimum system probability of error 
I 
~ 

and eventually the probability of e r ror  was determined as a function of  8 
1 

I as Pht tends toward zero, i .e 

~ 

I 
as can be seen by comparing (12 ) and (21) 

converges t o  the exact one i n  t h i s  case, 

expression for P: t o  mfnfnfze by signal design, we note *om (25) tha t  we  will force 

it smaller and smaller as we do minimize Pgo Hence, if Pe = Pe for  that case we have 

the jointly optimum transmitter and receivero 

obtained by applying Monte Carlo techniques t o  the exact likelihood rat io .  

t h i s  w i l l  show that  p: i s  sufficiently close t o  P," for practical  considerations, 

Actually, the approximate likelihood r a t io  
I 

Even though we  cannot derive the analytical 

1 
0 a I 

8 If not, we can compare Pe against Pz 

Hopefully 

I n  order t o  gain fuPther insight 8s t o  the trade-off involved between E a n d  pht 

The 

I 

I and their effect  on PE an ad-hoc approach was temporarily ensued at this point. 

signal which maximizes energy transfer for  t h f s  channel corresponding t o  (16) w a s  

derived fo r  8 = 0, i.e., 
1 

I 

1 N e x t  8 w a s  allowed t o  vary and % ( e )  was computed for  each 8 since the energy input 

was held fixed. Now the energy output E and pnt were computed as a function of 8, 
1 

i .e .,, I 
i 

E = fl(8) 

Pnt = f2(d 
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By allowing 8 t o  vary, the minimum i n  P: w a s  found which corresponded t o  8 = -49.3'. 

Figure 2 shows a sketch of t h i s  performance compared t o  the Bayes receiver evaluated by 

e P 
Single Shot Correlation Rec. 

Monte Carlo Evaluated Byes  

Approx.Uelihood Rr\tio 

EQ. (21) 

Rec . 
Rec. 

14 
E/NQ u c?b 

Fig. 2 Sketch of Relative Performance 
Monte-Carlo techniques and t o  the single-shot case of correlation reception: Each 

syskem had the same signal applied. It is especially interesting t o  note tha t  the 

Bzyes receiver is only about one-half db bet ter  i n  performance a t  high signal-to-noise 

ra t io .  
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